
This document was prepared in conjunction with work accomplished under Contract No.
DE-AC09-96SR18500 with the U. S. Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency
thereof.

This report has been reproduced directly from the best available copy.

Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical
Information Service, 5285 Port Royal Road, Springfield, VA 22161,
phone: (800) 553-6847,
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/index.asp

Available electronically at http://www.osti.gov/bridge
Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S.
Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN
37831-0062,
phone: (865)576-8401,
fax: (865)576-5728
email: reports@adonis.osti.gov

http://www.ntis.gov/help/index.asp
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
mailto:reports@adonis.osti.gov

Integrating New Technology Solutions to Improve Plant
Operations

Eric J. Heavin Lance Abbott
Engineer Principal Engineer
Bechtel Savannah River Inc. Westinghouse Savannah River Co.
Savannah River Site Savannah River Site
Aiken, SC 29808 Aiken, SC 29808

Daniel Shanyfelt
Engineer
Bechtel Savannah River Inc.
Savannah River Site
Aiken, SC 29808

KEYWORDS

Distributed Control System (DCS), Software, Application Programming Interface (API), Rapid
Application Development (RAD), Visual Studio .NET, Data Modeling

ABSTRACT

Continuing advancements in software and hardware technology are providing facilities the opportunity
for improvements in the areas of safety, regulatory compliance, administrative control, data collection,
and reporting. Implementing these changes to improve plant operating efficiency can also create many
challenges which include but are not limited to: justifying cost, planning for scalability, implementing
applications across varied platforms, integrating multitudes of proprietary vendor applications, and
creating a common vision for diverse process improvement projects.

The Defense Programs (DP) facility at the Savannah River Site meets these challenges on a daily basis.
Like many other plants, DP, has room for improvement when it comes to effective and clear
communication, data entry, data storage, and system integration. Specific examples of areas targeted
for improvement include: shift turnover meetings using system status data one to two hours old,
lockouts and alarm inhibits performed on points on the Distributed Control System (DCS) and tracked
in a paper logbook, disconnected systems preventing preemptive correction of regulatory compliance
issues, and countless examples of additional task and data duplication on independent systems.

Investment of time, money, and careful planning addressing these issues are already providing returns
in the form of increased efficiency, improved plant tracking and reduced cost of implementing the next
process improvement.

Specific examples of improving plant operations through thoroughly planned Rapid Application
Development of new applications are discussed. Integration of dissimilar and independent data
sources (NovaTech D/3 DCS, SQL Server, Access, Filemaker Pro, etc.) is also explored. The tangible
benefits of the implementation of the different programs to solve the operational problems previously
described are analyzed in an in-depth and comparative manner.

INTRODUCTION

Technology offers industrial applications near-limitless opportunities to increase efficiency, improve
regulatory compliance, expand product lines, and increase quality control. Every process from the
production line, to human resources, to the most mundane administrative task, is a candidate for
improvement through the utilization of the latest technological solutions. While the possibilities are
endless, implementing these process improvements can be a daunting and costly task. Many facilities
have become risk averse after a history of poorly planned projects promising amazing results, but often
delivering products that are expensive, difficult to maintain, impossible to upgrade and fall far short of
their promised value. Careful planning, however, can lay a foundation upon which “process
engineering” groups can implement solutions in a cost-effective way without having to become an
information technology (IT) group. This paper provides an overview of how to create this broad
technology plan along with examples of where this plan benefited development at the Savannah River
Site DP facility, and where holes in this plan led to extra work and cost.

SYSTEM ANALYSIS AND ARCHITECTURE

To create an effective technology plan, engineers must first analyze their system as a whole and learn
how to model that system using some of the fundamentals of modern software design. The initial
analysis must be comprehensive. That means looking outside of the areas that most systems
engineering groups are familiar with and determining how the process system relates to all of the
support and administrative systems used to operate the facility. Starting from a major key component
in one’s system and looking at all of its supporting and relational entities is crucial to determining data
flow for that system and outer system involvement. Figure 1 is an example of an overall analysis of
the DP operations facility displaying key components that contribute in generating a daily facility
operations report.

In Figure 1, all of the different components supply data to the “facility report” by means of facility
work performed, and the direct output from the process. This first big-picture look at all of the related
components of the system allows the model to be broken down by system for more detailed analysis by
those groups or individuals most intimately familiar with their operation. Breaking down individual
model components allows one to determine items such as: the source of the data, programs and
software used, and actions or work performed (see Figure 2).

Performing a thorough system analysis is not only an essential step in software modeling, but also
helps identify targets for improvement by providing a baseline against which improvements can be
judged for cost and potential return..

Once the system components have been analyzed, software engineering solutions can be approached.
For the software engineering portion, programming and software design expertise is not required.
However, a solid comprehension of Object Oriented Programming (OOP), Data Modeling and n-tier
solution design are essential to the success of even the smallest hardware or software project.
According to Evangelos Petoutsos and Asli Bilgin, “Any well-designed distributed system should
acknowledge four important points, which we refer to as the “abilities” of an application:
Interoperability, Scalability, Reusability, and Extensibility”1. These fundamentals are the tools needed
to the turn system analysis into the “technology plan” where individual projects of any scope can be
developed with the confidence that they will integrate with and support the next project in the pipe as
well as future projects. This kind of interoperability will drastically improve return on investment as
the tools lifespan is increased and maintenance costs reduced.

DESIRED MODIFICATIONS

Even after a thorough system analysis it still may not be obvious which areas to target for
improvement first. Obvious first choices include the following:

• Related functionality spread across multiple systems
• Important data not collected or difficult to retrieve
• Confusing user interfaces

Most of these were apparent before the system analysis, so what has this work really done to clarify
the situation? First, a better picture of approaching system modification tasks and how much effort is
involved in solving these problems is starting to form. Second, a number of more subtle, yet valuable
opportunities are now available for consideration. Some targets that may be less obvious, but often
present great opportunities for cost-effective improvement include the following:

• Data duplication
• Broad-scope reporting
• Functionality Duplication

There were two main projects that drove the initial DP system analysis and architecture configuration.
These projects will be referred to as the Facility Status Board (FSB), and the System Status Log (SSL).
Both were inspired by the need to enhance facility communication, eliminate data duplication, and
reduce “operator error” by being able to implement better administrative controls. These projects will
be chronicled throughout the remainder of this paper to help share some of the “lessons learned” in a
facility with the desire to implement the newest technology to solve every problem, but without the
resources to do so without careful planning and expanding the skills of process engineers into the
realm of IT.

The FSB project was driven by the inefficiency of communication between on-coming and off-going
shifts. There are several different buildings and systems that contribute to the shift turnover meetings.
Each area was required to bring data from the separate control rooms, offices, and work areas on

printouts to one central meeting room. The system analysis revealed (in Figure 1) several different
input streams with duplicate data, isolated networks, and data validity issues. The solution for this
project (see Figure 3) was to design or obtain a program that could be run and updated from multiple
locations throughout the facility on a single accessible network for determining current facility status
information. Each section of the facility was then divided up into different electronic “boards” of data
where their equipment and area information could be updated for display to the rest of the plant.

The SSL project was created to meet two critical facility needs. One of these needs was to provide
operations a tool to make large system status changes (lockouts, alarm inhibits, caution tags) of groups
of points instead of a single point at a time. The second facility need was to provide an electronic log
to improve accountability and provide easily accessible information of system configuration. The
system analysis (see previous example in Figure 2) revealed the inconsistency of operators having to
log system status changes performed on the DCS in separate log sheets or databases isolated from the
DCS, and operators losing valuable time performing mass system status changes. The answer to this
dilemma was to design or obtain a program that could add all the administrative controls and tracking
information of performing a system status change to a tool that the operator could use on the DCS.

RESOURCE ALLOCATION

After laying the groundwork for the software solution and creating a proposal for development, much
thought should be given to appropriately allocating resources to different project tasks. The task of
data modeling should be performed by a knowledgeable modeler who is in contact with the different
area “experts” for the proposed model. The initial design should be as all-encompassing as possible.
A good interviewing practice to follow for the data modeler would be to ask each process area expert
about their system requirements, but also ask questions concerning expansion, frequency, and any
special cases to allow for more design room and growth. Open-ended questions like “Do you think
you would utilize this addition” or “Would it make sense to if this was performed this way” invokes
thought into what is trying to be done, and involves and challenges the area expert to take a different
look at his/her current setup.

Interface design of an application should at least take into consideration comments of as many
developers, designers, and users as possible. Interfaces should be as standardized as possible to
minimize user and operator retraining during revisions or modifications, and to assist in the goal of
developing applications in modular form (see User Interface section for continued discussion).

DEVELOPING A DATA MODEL

The most critical part of creating architecture, the data model, is often completely ignored or paid very
little attention to. A well designed data model will outlast every software package in a plant,
developed or acquired. A poorly designed data model, on the other hand, will increase installation
cost, complicate maintenance and shorten the lifespan of those same packages. Changes to a data
model currently in use can and will require rework of every referencing program. Investing time and
effort to understand the all of the systems in the plant and how to represent them in a way that is
complete, useful and flexible will give greater returns than any other phase of development.

How does a system engineering group go about creating a data model? A discussion of the details of
data modeling and how to create and manage relational databases is far beyond the scope of this paper.
Many resources, however, make the field accessible to the amateur IT engineer. Data Modeling
Essentials2 is highly recommended. What is within the scope of this paper however, is to further the
previously mentioned case studies of the FSB and SSL projects as they pertain to data modeling. An
important point to mention here is the fact that the data model for these two projects are distinct only
because of a particular data isolation (isolated network due to classification) issue encountered as a
result of the type of data that is handled in the DP Facility. Unless there is a compelling reason not to
(security, data integrity, performance, etc.), all facility data should be represented using a single model.
Even if this model must be replicated on different isolated networks.

For the FSB program, the initial data model consisted of having status boards created by the program
directly bound to individual tables within the database. Each table was designed based what was
desired to be displayed on its own particular status board (see Figure 5). One of the first problems

encountered with this model was how to display data on multiple boards without duplicating the data
in the DB.

Basing the FSB application design so directly on the structure of the database made changes to either
entity very difficult and time consuming, with extensive testing required.

The newer FSB database model allowed for as much expansion or reduction as envisioned possible.
This was accomplished by making a completely relational database with the ability to have multiple
areas with dependent systems, and pieces of equipment (see Figure 6).

The newer model design was based on the actual facility data architecture, rather than what was
desired to be displayed on an individual status board. Using this structure made this data readily
available for access by any type of program. This design also allowed for a much more versatile and
distributable database, which could not only be applied to the DP facility, but any other process
facility.

The SSL data model was designed to replicate a relational version of the “flat file” DCS Continuous
Database (CDB) in order to track, log, and perform the required system status changes.
This database was designed to seamlessly integrate with the DCS (see Figure 7).

The initial data model for the SSL program was very good at having the most current system
information from the DCS, but had several issues with keeping historical data. This mainly dealt with
the ability to update DCS information (point names, type, etc.) that were tracked within the different
status logs. Since the database design called for a force-update table relationship with the DCS, all
historically tracked points would be updated with the most current DCS information even if that wasn’t
the value at the time it was entered. To be able to keep true historical data, the data model needed to
be modified to allow for DCS point revisions.

As one can gather from reading the previous examples, many different designs of different data models
were analyzed during the development process. After multiple revisions it became apparent that while
there were no entirely “perfect” data models, there were clearly models that better met the
requirements than others. All models are compromises between the principles of data integrity,
normalization, performance and functionality. The key to building a solid data model is understanding
these compromises, and making the choice that best suits the needs of the facility.

USER INTERFACES

A good user interface can make, or break a potentially brilliant application. Creating applications with
a standardized and intuitive design increases the odds of user acceptance of the software. Adhering to
a set of Human Factors standards3 helps ensure a consistent “look and feel” among existing and new
utilities. Experience in the DP Facility has demonstrated that end users identify more with how they
relate with a product than what functionality the product supplies. Therefore, the consistent look and
feel of new or modified applications greatly increases user comfort. Time and effort spent
standardizing interface logic is easily recaptured with savings in training and support. Creating
standard objects and controls to use for the same functions within separate applications enhances the
ability to re-use controls, forms, and program layouts.

No one knows more about a particular end user’s job than the end user them self. Each new product
initially decreases the user’s overall familiarity with how to perform that task. For successful
application acceptance and implementation, the user must recognize how the product benefits them

when it is introduced. As previously mentioned, using RAD techniques to familiarize the end user
with the product and collect continuous feedback during the early stages of development are both
critical to integrating new applications in a continuously operating process environment. Taking the
time to give users more input into the application contributes to a feeling of ownership on the part of
the end user. When the end user feels invested in the product, they are far more likely to view the
product as a way to make their job easier than as another ill-conceived imposition by a process support
group.

While important, user input must still be balanced with good development practices. Development of
the interface must be a team effort between both developers and users. The user’s initial ideas on how
an interface should operate may prove to be inefficient or unusable in practice. Working with the user
to guide them to a final product that both satisfies their needs and is based on solid design principle
and HFE standards is a great example of a balanced development process.

CONCLUSION

Thorough planning and detailed design is essential in the success of any technology plan. Performing
a detailed system analysis can not only better paint a picture of the effort of implementing new
technological solutions into ones process, but also make known some of the less obvious system
weaknesses.

For the DP Facility, thousands of man-hours were saved after the successful implementation of the
FSB program. The facility also went from having two major process building’s information readily
available at shift turnover, to five. The SSL program opened the door for developing custom
applications for better plant operation such as tracking and logging operating caution tags on devices,
performing system maintenance, and obtaining detailed DCS shift reports.

REFERENCES

1. Petroutsos, Evangelos & Bilgin, Asli, Visual Basic .NET Database Programming, Sybex, ©
2002

2. Simison, Graeme C., Data Modeling Essentials – Analysis Design, and Innovation – 2nd
Edition, Coriolis © 2001

3. Office of Nuclear Regulatory Research, NUREG-0700: Human System Interface Design
Review Guideline, ©1996

4. Charles Williams, Professional Visual Basic 6 Databases, Wrox Press Ltd. © 1999

	ABSTRACT
	INTRODUCTION
	SYSTEM ANALYSIS AND ARCHITECTURE
	DESIRED MODIFICATIONS
	RESOURCE ALLOCATION
	DEVELOPING A DATA MODEL
	USER INTERFACES
	CONCLUSION
	REFERENCES

